4.7 Article

A methodology for cable damage identification based on wave decomposition

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 442, Issue -, Pages 527-551

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2018.11.018

Keywords

Cable; Bending wave; Wave decomposition; Evanescent wave; Signal transform; Damage identification

Funding

  1. China Scholarship Council (CSC) [201607000039]

Ask authors/readers for more resources

Vibration-based damage identification has been widely studied in the field of structural health monitoring (SHM) for several decades. It is well known, however, that low-order modal parameters, being among the most frequently used, are not sensitive to local damage. A suitable methodology is therefore needed to extract such damage features from the dynamic response of structures. In the present work, local bending behavior of cables is studied for damage identification. First, the dynamic response of a cable is decomposed into evanescent wave and propagating wave components. It is proven that the contribution of the evanescent wave is spatially concentrated, and is sensitive to local damage. A signal transform is proposed next, which allows the estimation of the wave components from the measured cable response. The reflection coefficient of the evanescent wave (REW), which can be calculated from the estimated wave coefficients, depends only on the characteristics of the local discontinuity, and proves to be a robust indicator for local damage. The feasibility of the proposed methodology is studied by means of a simulated experiment, considering a cable model with two locally damaged parts. The results show that the intensity of REW is significantly higher near the damage locations, allowing damage localization. From the estimated REW near the damage locations, the damage levels can be estimated, showing the potential of this methodology for damage assessment of cable structures. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available