4.8 Article

Thermal characteristics of 80 °C storage-degraded 18650-type lithium-ion secondary cells

Journal

JOURNAL OF POWER SOURCES
Volume 416, Issue -, Pages 148-154

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2019.01.087

Keywords

Lithium-ion secondary cell; Thermal runaway; Storage degradation; State of charge; Self-heating rate; Relative heat generation rate

Funding

  1. International Joint Research Program for Innovative Energy Technology of the Ministry of Economy, Trade and Industry, Japan

Ask authors/readers for more resources

It is important for large-scale lithium-ion secondary cells to function in a safe and stable manner. Little information is available on the parameters determining the transitions between non-heating, self-heating, and thermal runaway processes of degraded lithium-ion secondary cells. Thermal characterization of the degraded cells is important to identify the impact of degradation on the safety limits of these cells. Accelerating rate calorimeter (ARC), operated in a heat-wait-search mode, is capable of characterizing the thermal behavior of lithium-ion cells. Here, the self-heating and relative heat generation rates of storage-degraded lithium-ion cells during thermal runaway are investigated. Twenty-five 18650-type LiCoO2-based secondary cells are degraded during storage at 80 degrees C with various states of charge (SOCs), then the thermal behavior of the cells was analyzed by carrying out ARC measurements. The correlations between the onset temperature of thermal runaway, self-heating rate, and heating rate of each cell are investigated. It was found that the self-heating rate correlates linearly with the onset temperature of thermal runaway, while the relative heat generation rate correlates with it exponentially. The cells charged to 100% SOC presented the lowest onset temperatures of thermal runaway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available