4.8 Article

Mixed Cs and FA Cations Slow Electron-Hole Recombination in FAPbI3 Perovskites by Time-Domain Ab Initio Study: Lattice Contraction versus Octahedral Tilting

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 10, Issue 3, Pages 672-678

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.8b03729

Keywords

-

Funding

  1. National Science Foundation of China [21573022, 51861135101]
  2. Fundamental Research Funds for the Central Universities
  3. Beijing Normal University Startup

Ask authors/readers for more resources

Using time domain density functional theory combined with non-adiabatic (NA) molecular dynamics, we show that electron-hole recombination takes subnanoseconds in FAPbI3, showing excellent agreement with experiment. Cs doping retards charge recombination by factors of 1.1 and 3.1 due to lattice contraction and octahedral tilting, respectively. Lattice contraction decreases the NA coupling and increases the coherence time arising from the suppressed atomic fluctuations, slightly slowing recombination because the two factors have an opposite influence on quantum transition. In contrast, octahedral tilting simultaneously decreases the NA coupling, thanks to the reduced overlap between Pb and I orbitals, and the coherence time, extending the excited-state lifetime over 1 ns. Our simulations provide a mechanistic understanding for delayed charge losses in the mixed Cs and FA system, suggesting a rational strategy to improve perovskite solar cell performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available