4.6 Article

Understanding the Impact of Defects on Catalytic CO Oxidation of LaFeO3-Supported Rh, Pd, and Pt Single-Atom Catalysts

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 123, Issue 12, Pages 7290-7298

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.9b01520

Keywords

-

Funding

  1. European Union's Horizon 2020 research and innovation programme [686086]
  2. Netherlands Organization for Scientific Research

Ask authors/readers for more resources

Understanding the intrinsic catalytic properties of perovskite materials can accelerate the development of highly active and abundant complex oxide catalysts. Here, we performed a first-principles density functional theory study combined with a microkinetics analysis to comprehensively investigate the influence of defects on catalytic CO oxidation of LaFeO(3 )catalysts containing single atoms of Rh, Pd, and Pt. La defects and subsurface O vacancies considerably affect the local electronic structure of these single atoms adsorbed at the surface or replacing Fe in the surface of the perovskite. As a consequence, not only the stability of the introduced single atoms is enhanced but also the CO and O-2 adsorption energies are modified. This also affects the barriers for CO oxidation. Uniquely, we find that the presence of La defects results in a much higher CO oxidation rate for the doped perovskite surface. A linear correlation between the activation barrier for CO oxidation and the surface O vacancy formation energy for these models is identified. Additionally, the presence of subsurface O vacancies only slightly promotes CO oxidation on the LaFeO3 surface with an adsorbed Rh atom. Our findings suggest that the introduction of La defects in LaFeO3- based environmental catalysts could be a promising strategy toward improved oxidation performance. The insights revealed herein guide the design of the perovskite-based three-way catalyst through compositional variation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available