4.6 Article

Enhanced Hydrolytic Stability of Porous Boron Nitride via the Control of Crystallinity, Porosity, and Chemical Composition

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 123, Issue 7, Pages 4282-4290

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b11731

Keywords

-

Funding

  1. BP through the BP International Centre for Advanced Materials (BP-ICAM)
  2. EPSRC through the CDT in Advanced Characterization of Materials (CDT-ACM) [EP/L015277/1]
  3. Department of Chemical Engineering at Imperial College London
  4. EPSRC [1855454] Funding Source: UKRI

Ask authors/readers for more resources

Porous boron nitride is gaining significant attention for applications in molecular separations, photocatalysis, and drug delivery. All these areas call for a high degree of stability (or controlled stability) over a range of chemical environments, particularly under humid conditions. The hydrolytic stability of the various forms of boron nitride, including porous boron nitride, has been sparingly addressed in the literature. Here, we map the physical-chemical properties of the material to its hydrolytic stability for a range of conditions. Using analytical, imaging, and spectroscopic techniques, we identify the links between the hydrolytic instability of porous boron nitride and its limited crystallinity, high porosity, as well as the presence of oxygen atoms. To address this instability issue, we demonstrate that subjecting the material to a thermal treatment leads to the formation of crystalline domains of h-BN exhibiting a hydrophobic character. The heat-treated sample displays an enhanced hydrolytic stability, while maintaining a high porosity. This work provides an effective and simple approach to producing stable porous boron nitride structures and will progress the implementation of the material in applications involving interfacial phenomena.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available