4.5 Article

Molecular Origin of the Elastic State of Aqueous Hyaluronic Acid

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 123, Issue 14, Pages 3043-3049

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.9b00982

Keywords

-

Ask authors/readers for more resources

The macroscopic mechanical properties of biological hydrogels are broadly studied and successfully mimicked in synthetic materials, but little is known about the molecular interactions that mediate these properties. Here, we use two-dimensional infrared spectroscopy to study the pH-induced gelation of hyaluronic acid, a ubiquitous biopolymer, which undergoes a transition from a viscous to an elastic state in a narrow pH range around 2.5. We find that the gelation originates from the enhanced formation of strong interchain connections, consisting of a double amide-COOH hydrogen bond and an N-D-COO- hydrogen bond on the adjacent sugars of the hyaluronan disaccharide unit. We confirm the enhanced interchain connectivity in the elastic state by atomic force microscopy imaging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available