4.5 Article

Dissecting the Energetics of Subunit Rotation in the Ribosome

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 123, Issue 13, Pages 2812-2823

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.9b00178

Keywords

-

Funding

  1. NSF CAREER Award [MCB-1350312]
  2. Northeastern University Discovery Cluster
  3. C3DDB cluster

Ask authors/readers for more resources

The accurate expression of proteins requires the ribosome to efficiently undergo elaborate conformational rearrangements. The most dramatic of these motions is subunit rotation, which is necessary for tRNA molecules to transition between ribosomal binding sites. While rigid-body descriptions provide a qualitative picture of the process, obtaining quantitative mechanistic insights requires one to account for the relationship between molecular flexibility and collective dynamics. Using simulated rotation events, we assess the quality of experimentally accessible measures for describing the collective displacement of the similar to 4000-residue small subunit. For this, we ask whether each coordinate is able to identify the underlying free-energy barrier and transition state ensemble (TSE). We find that intuitive structurally motivated coordinates (e.g., rotation angle, interprotein distances) can distinguish between the endpoints, though they are poor indicators of barrier crossing events, and they underestimate the free-energy barrier. In contrast, coordinates based on intersubunit bridges can identify the TSE. We additionally verify that the committor probability for the putative TSE configurations is 0.5, a hallmark feature of any transition state. In terms of structural properties, these calculations implicate a transition state in which flexibility allows for asynchronous rearrangements of the bridges, as the ribosome adopts a partially rotated orientation. This provides a theoretical foundation, upon which experimental techniques may precisely quantify the energy landscape of the ribosome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available