4.6 Article

Autocatalysis-Driven Clock Reaction III: Clarifying the Kinetics and Mechanism of the Thiourea Dioxide-Iodate Reaction in an Acidic Medium

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 123, Issue 9, Pages 1740-1748

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.9b00584

Keywords

-

Funding

  1. National Natural Science Foundation of China [21773304]
  2. Fundamental Research Funds for the Central Universities [2015XKZD09]
  3. Natural Science Foundation of Jiangsu Province [BK20171186]
  4. Higher Education Institutional Excellence Programme of the Ministry of Human Capacities in Hungary [20765-3/2018/FEKUTSTRAT]
  5. European Union
  6. European Social Fund [EFOP-3.6.1.-16-2016-00004]
  7. Hungarian Research Fund NKFIH-OTKA [K116591]
  8. [GINOP-2.3.2-15-2016-00049]

Ask authors/readers for more resources

The thiourea dioxide-iodate reaction has been reinvestigated spectrophotometrically under acidic conditions using phosphoric acid-dihydrogen phosphate buffer within the pH range of 1.1-1.8 at 1.0 M ionic strength adjusted by sodium perchlorate and at 25 degrees C. The system was found to exhibit clock behavior, having a well-defined and reproducible time lag called Landolt time, though elementary iodine may even be detected in substrate excess; hence, under these conditions, the reaction can be classified as an autocatalysis-driven clock reaction. It is clearly demonstrated that the previously proposed kinetic model suffers from serious drawbacks from both theoretical and experimental points of view. The reaction may be characterized by either sigmoidal-shaped or rise-and-fall kinetic traces, depending on the initial concentration ratio of the reactants. Iodide significantly accelerates the appearance of the clock species iodine acting therefore as an autocatalyst. The age of stock TDO solution also has a great, so far completely overlooked impact on the Landolt time. On the basis of evaluating simultaneously the kinetic curves, a 16 step kinetic model including 5 well-known rapidly established equilibria is proposed with 7 fitted rate coefficients in which the rate coefficients of both forms of TDO were determined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available