4.6 Article

Air-stable all-inorganic perovskite quantum dot inks for multicolor patterns and white LEDs

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 54, Issue 9, Pages 6917-6929

Publisher

SPRINGER
DOI: 10.1007/s10853-019-03382-2

Keywords

-

Funding

  1. National Science Foundation of China [11704206]
  2. Research Fund Project of Ningbo University [XYL18019]
  3. K.C. Wong Magna Fund in Ningbo University

Ask authors/readers for more resources

Recently, all-inorganic perovskite quantum dots (QDs) (CsPbX3, X = Cl, Br, I) as the emerging semiconductor materials have been intensively studied owing to superior optical properties. Currently, the strategy for preparation of inorganic perovskite QDs mainly focuses on the hot-injection method, but requires inert gas protection and is difficult to mass-produce. In this work, we developed a simple and low-cost strategy for preparing highly luminescent and air-stable all-inorganic perovskite QDs by directly heating perovskite precursors in octane in air. The emission wavelength of CsPbX3 perovskite QDs can be tunable from ultraviolet (UV) to infrared region by simply controlling their halide composition and display high PLQYs. Moreover, CsPbX3 perovskite QDs in octane can exist more than half a year in air and the film of CsPbX3 perovskite QDs also shows good thermal stability and air stability, especially high iodide-substituted CsPbBr3-xIx perovskite QDs. The CsPbX3 perovskite QDs can be easily blended with PDMS and used as color conversion layer on the blue LEDs chip for high-quality white LEDs. Our work opens a window for the potential application of such highly luminescent material in the fields of multicolor LEDs, backlight display and other related optoelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available