4.3 Article

Suppressing transthyretin production in mice, monkeys and humans using 2nd-Generation antisense oligonucleotides

Journal

AMYLOID-JOURNAL OF PROTEIN FOLDING DISORDERS
Volume 23, Issue 3, Pages 148-157

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/13506129.2016.1191458

Keywords

Amyloidosis; ATTR; FAC; familial; FAP

Ask authors/readers for more resources

Transthyretin amyloidosis (ATTR amyloidosis) is a rare disease that results from the deposition of misfolded transthyretin (TTR) protein from the plasma into tissues as amyloid fibrils, leading to polyneuropathy and cardiomyopathy. IONIS-TTRRx (ISIS 420915) is a 2nd-Generation 2-O-(2-methoxyethyl) modified 2-MOE antisense oligonucleotide (ASO) that targets the TTR RNA transcript and reduces the levels of the TTR transcript through an RNaseH1 mechanism of action, leading to reductions in both mutant and wild-type TTR protein. The activity of IONIS-TTRRx to decrease TTR protein levels was studied in transgenic mice bearing the Ile84Ser human TTR mutant, in cynomolgus monkeys and in healthy human volunteers. Robust (>80%) reductions of plasma TTR protein were obtained in all three species treated with IONIS-TTRRx, which in mice and monkeys was associated with substantial reductions in hepatic TTR RNA levels. These effects were dose-dependent and lasted for weeks post-dosing. In a Phase 1 healthy volunteer study, treatment with IONIS-TTRRx for four weeks was well tolerated without any remarkable safety issues. TTR protein reductions up to 96% in plasma were observed. These nonclinical and clinical results support the ongoing Phase 3 development of IONIS-TTRRx in patients with ATTR amyloidosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available