4.7 Article

Visible light photocatalytic mineralization of bisphenol A by carbon and oxygen dual-doped graphitic carbon nitride

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 540, Issue -, Pages 97-106

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2019.01.023

Keywords

Graphitic carbon nitride; Visible-light photocatalytic; BPA mineralization; Carbon-oxygen dual-doping

Funding

  1. National Natural Science Foundation of China [51778295, 51678306, 51478223]
  2. China Postdoctoral Science Foundation [2017T100372, 2016M590458, 2013M541677]
  3. Jiangsu Planned Projects for Postdoctoral Research Funds [1202007B]

Ask authors/readers for more resources

A facile thermal polymerization was applied to synthesize carbon and oxygen dual-doped graphitic carbon nitride (MACN) with controllable electronic band structure using malonic acid and urea as precursors. The C and O atoms substituted the sp(2) N atom in graphitic carbon nitride (CN). The 1MACN (1 represented that the weight ratio of malonic acid to urea is 1% during the synthesis) with optimal band structure could decompose 15 ppm bisphenol A (BPA) within 150 min, and the mineralization rate reached to 52%. The superior photocatalytic performance of 1MACN was mainly ascribed to electronic band structure together with optical properties. On the one hand, the formation of delocalized big it bonds favored the electrons transfer after the introducing of carbon atoms. On the other hand, a positive charge density existed on the C atoms because of high electronegativity of contiguous O (3.44) that substituted N compared with C (2.55), which could attribute to high activity of MACN catalyst. The study will contribute to the further improvement of visible-light photocatalytic BPA degradation and mineralization. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available