4.7 Article

Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 536, Issue -, Pages 112-126

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2018.10.041

Keywords

Biomaterial functionalization; Gelatin-capped silver nanoparticle; Intrastromal administration; Anti-infective therapeutics; Bacterial keratitis

Funding

  1. Ministry of Science and Technology of the Republic of China [MOST107-2314-B-182-016-MY3, MOST107-2811-B-182-524]

Ask authors/readers for more resources

Staphylococcus aureus (S. aureus) is a leading cause of keratitis worldwide and a significant threat to healthy vision. Pathological manifestations of bacterial keratitis (BK) caused by S. aureus involve stromal opacity, edema and neovascularization of an inflamed cornea, requiring immediate medical attention. Thus, S. aureus-induced keratitis is a devastating ocular infection that can lead to blindness if effective and timely treatment is not initiated. In this study, we demonstrate gelatin-capped silver nanoparticles (G-Ag NPs) as anti-infective therapeutics for the treatment of S. aureus-induced keratitis. G-Ag NPs were prepared by simple mixing of silver nitrate, maltose and gelatin. The gelatin molecules are capped in situ on the Ag NPs (similar to 14 nm). Compared to uncapped Ag NPs, the G-Ag NPs possess superior stability and antibacterial activity against S. aureus. We further demonstrate that G-Ag NPs possess effective inhibition of the proliferation, migration and tube formation of human umbilical vein endothelial cells, as well as strong disturbance of the angiogenesis in chick chorioallantoic membrane and rabbit corneal neovascularization. Furthermore, intrastromal administration of highly biocompatible G-Ag NPs alleviates S. aureus-induced bacterial keratitis in rabbit eyes and bacterial infection-induced corneal neovascularization. Our results demonstrate G-Ag NPs as a promising dual functional (antimicrobial and antiangiogenic) nanotherapeutic for preclinical treatment of eye-related microbial infections. (C) 2018 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available