4.7 Article

The hydrophobic surface state of talc as influenced by aluminum substitution in the tetrahedral layer

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 536, Issue -, Pages 737-748

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2018.10.085

Keywords

Hydrophobicity; Talc; Aluminum substitution; X-ray photoelectron spectroscopy (XPS); Bubble attachment; Molecular dynamics simulation (MDS)

Funding

  1. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FG03-93ER14315]
  2. Newmont USA, Ltd.

Ask authors/readers for more resources

Talc is both an important industrial mineral product recovered by flotation, and also in other cases, a gangue mineral of concern in the flotation of certain sulfide ores, such as the PGM ores from South Africa and from the United States. The talc face surface is naturally hydrophobic with a water sessile drop contact angle of nearly 80, which accounts for its flotation recovery in one case, and its contamination of sulfide mineral concentrates in other instances. Due to the presence of impurities in the talc structure the surface properties change. One such effect is the presence of aluminum, which can replace silicon in the silica tetrahedral layer of the talc structure. This results in a charge imbalance on the face surface because Si+4 is replaced by Al+3. Sessile drop contact angle and bubble attachment time measurements were made, and these results were compared to the results from molecular dynamics simulations (MDS). The extent of aluminum substitution in the silica tetrahedral layer was considered, and the sessile drop contact angle was found to decrease with increased aluminum content, decreasing from about 80 degrees for no substitution (talc) to 0 degrees for extensive substitution (phlogopite). The water film was found to be stable at the surface of highly aluminum substituted crystals due to the interaction between water molecules and the increased polarity of the surface state. This stable water film restricts the air bubble from attaching to such face surfaces. However, in the absence of aluminum substitution, no interactions between the water molecules and the face surface were observed and the air bubble readily attached to the face surface. This study provides additional understanding of how aluminum substitution in the tetrahedral layer affects the fundamental surface properties of talc, paving the way for the design of improved reagents for talc flotation as an industrial mineral product, and for talc depression in the recovery of sulfide mineral concentrates. (C) 2018 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available