4.7 Article

A Combined Spin-Flip and IP/EA Approach for Handling Spin and Spatial Degeneracies: Application to Double Exchange Systems

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 15, Issue 4, Pages 2278-2290

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.8b01268

Keywords

-

Funding

  1. Department of Energy [DE-SC0018326]
  2. U.S. Department of Energy (DOE) [DE-SC0018326] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

Many multiconfigurational systems, such as single-molecule magnets, are difficult to study using traditional computational methods due to the simultaneous existence of both spin and spatial degeneracies. In this work, a new approach termed n-spin-flip ionization potential/electron affinity (nSF-IP or nSF-EA) is introduced which combines the spin-flip method of Anna Krylov with particle-number changing IP/EA methods. We demonstrate the efficacy of the approach by applying it to the strongly correlated N-2(+), as well as several double exchange systems. We also demonstrate that when these systems are well-described by a double exchange model Hamiltonian, only 1SF-IP/EA is required to extract the double exchange parameters and accurately predict energies for the low-spin states. This significantly reduces the computational effort for studying such systems. The effects of including additional excitations (using a RAS-nSF-IP/EA scheme) are also examined, with particular emphasis on hole and particle excitations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available