4.7 Article

Spin splittings from first-order symmetry-adapted perturbation theory without single-exchange approximation

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 150, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5086079

Keywords

-

Funding

  1. U.S. National Science Foundation CAREER Award [CHE-1351978]

Ask authors/readers for more resources

The recently proposed spin-flip symmetry-adapted perturbation theory (SF-SAPT) first-order exchange energy [Patkowski et al., J. Chem. Phys. 148, 164110 (2018)] enables the standard open-shell SAPT approach to treat arbitrary spin states of the weakly interacting complex. Here, we further extend first-order SF-SAPT beyond the single-exchange approximation to a complete treatment of the exchanges of electrons between monomers. This new form of the exchange correction replaces the single-exchange approximation with a more moderate single-spin-flip approximation. The newly developed expressions are applied to a number of small test systems to elucidate the quality of both approximations. They are also applied to the singlet-triplet splittings in pancake bonded dimers. The accuracy of the single-exchange approximation deteriorates at short intermolecular separations, especially for systems with few electrons and for the high-spin state of the complex. In contrast, the single-spin-flip approximation is exact for interactions involving a doublet molecule and remains highly accurate for any number of unpaired electrons. Because the single-exchange approximation affects the high-spin and low-spin states of pancake bonded complexes evenly, the resulting splitting values are of similar accuracy to those produced by the formally more accurate single-spin-flip approximation. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available