4.7 Article

High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 150, Issue 5, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5079225

Keywords

-

Funding

  1. NSF [DMR-1505817]
  2. U.S. Department of Energy, National Nuclear Security Administration, through the Capital-DOE Alliance Center [DE-NA0003858]

Ask authors/readers for more resources

The theoretical exploration of the phase diagrams of binary hydrides under pressure using ab initio crystal structure prediction techniques coupled with first principles calculations has led to the in silico discovery of numerous novel superconducting materials. This Perspective focuses on the alkaline earth and rare earth polyhydrides whose superconducting critical temperature, T-c, was predicted to be above the boiling point of liquid nitrogen. After providing a brief overview of the computational protocol used to predict the structures of stable and metastable hydrides under pressure, we outline the equations that can be employed to estimate T-c. The systems with a high T-c can be classified according to the motifs found in their hydrogenic lattices. The highest T(c)s are found for cages that are reminiscent of clathrates and the lowest for systems that contain atomic and molecular hydrogen. A wide variety of hydrogenic motifs including 1- and 2-dimensional lattices, as well as H-10(delta-) molecular units comprising fused H-5(delta-) pentagons, are present in phases with intermediate T(c)s. Some of these phases are predicted to be superconducting at room temperature. Some may have recently been synthesized in diamond anvil cells. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available