4.6 Article

The N-glycan structures of the antigenic variants of chlorovirus PBCV-1 major capsid protein help to identify the virus-encoded glycosyltransferases

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 294, Issue 14, Pages 5688-5699

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.RA118.007182

Keywords

DNA viruses; glycosyltransferase; bioinformatics; nuclear magnetic resonance (NMR); N-linked glycosylation; post-translational modification (PTM); capsid protein; molecular modeling; Paramecium bursaria chlorella virus 1 (PBCV-1)

Funding

  1. Mizutani Foundation Grant [180047]
  2. National Institutes of Health IDeA Networks of Biomedical Research Excellence program
  3. National Science Foundation [1736030]
  4. MINECO, CSIC [CTQ2015-64597-C2-1P]
  5. MINECO, Severo Ochoa Excellence Accreditation [SEV-2016-0644]

Ask authors/readers for more resources

The chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) is a large dsDNA virus that infects the microalga Chlorella variabilis NC64A. Unlike most other viruses, PBCV-1 encodes most, if not all, of the machinery required to glycosylate its major capsid protein (MCP). The structures of the four N-linked glycans from the PBCV-1 MCP consist of nonasaccharides, and similar glycans are not found elsewhere in the three domains of life. Here, we identified the roles of three virus-encoded glycosyltransferases (GTs) that have four distinct GT activities in glycan synthesis. Two of the three GTs were previously annotated as GTs, but the third GT was identified in this study. We determined the GT functions by comparing the WT glycan structures from PBCV-1 with those from a set of PBCV-1 spontaneous GT gene mutants resulting in antigenic variants having truncated glycan structures. According to our working model, the virus gene a064r encodes a GT with three domains: domain 1 has a -l-rhamnosyltransferase activity, domain 2 has an -l-rhamnosyltransferase activity, and domain 3 is a methyltransferase that decorates two positions in the terminal -l-rhamnose (Rha) unit. The a075l gene encodes a -xylosyltransferase that attaches the distal d-xylose (Xyl) unit to the l-fucose (Fuc) that is part of the conserved N-glycan core region. Last, gene a071r encodes a GT that is involved in the attachment of a semiconserved element, -d-Rha, to the same l-Fuc in the core region. Our results uncover GT activities that assemble four of the nine residues of the PBCV-1 MCP N-glycans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available