4.6 Article

Silicon surface passivation by transparent conductive zinc oxide

Journal

JOURNAL OF APPLIED PHYSICS
Volume 125, Issue 10, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5054166

Keywords

-

Funding

  1. Dutch Ministry of Economic Affairs, through the Topconsortia for Knowledge and Innovation (TKI) program AAA
  2. Netherlands Organisation for Scientific Research under the Dutch TTW-VENI [15896]
  3. Solliance Solar Research consortium
  4. Dutch province of Noord-Brabant
  5. Dutch Ministry of Economic Affairs, through the Topconsortia for Knowledge and Innovation (TKI) program Compass

Ask authors/readers for more resources

Surface passivation is essential for high-efficiency crystalline silicon (c-Si) solar cells. Despite the common use of transparent conductive oxides (TCOs) in the field of solar cells, obtaining surface passivation by TCOs has thus far proven to be particularly challenging. In this work, we demonstrate outstanding passivation of c-Si surfaces by highly transparent conductive ZnO films prepared by atomic layer deposition. Effective surface recombination velocities as low as 4.8 cm/s and 11 cm/s are obtained on 3 Omega. cm n- and p-type (100) c-Si, respectively. The high levels of surface passivation are achieved by a novel approach by using (i) an ultrathin SiO2 interface layer between ZnO and c-Si, (ii) a sacrificial Al2O3 capping layer on top of the ZnO film during forming gas annealing, and (iii) the extrinsic doping of the ZnO film by Al, B, or H. A combination of isotope labeling, secondary-ion mass spectrometry, and thermal effusion measurements showed that the sacrificial Al2O3 capping layer prevents the effusion of hydrogen from the crystalline ZnO and the underlying Si/SiO2 interface during annealing, which is critical in achieving surface passivation. After annealing, the Al2O3 capping layer can be removed from the ZnO film without impairing the high levels of surface passivation. The surface passivation levels increase with increased doping levels in ZnO, which can be attributed to field-effect passivation by a reduction in the surface hole concentration. The ZnO films of this work are suitable as a transparent conductor, an anti-reflection coating, and a surface passivation layer, which makes them particularly promising for simplifications in future solar cell manufacturing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available