4.7 Article

Estimation of Syringyl Units in Wood Lignins by FT-Raman Spectroscopy

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 67, Issue 15, Pages 4367-4374

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.8b06707

Keywords

cell wall; DFRC; NMR; syringyl-to-guaiacyl lignin ratio; percent syringyl; thioacidolysis

Funding

  1. DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494, DE-SC0018409]

Ask authors/readers for more resources

Syringyl (S) lignin content and the syringyl-to-guaiacyl (S/G) lignin ratio are important characteristics of wood and lignocellulosic biomass. Although numerous methods are available for estimating S lignin units and the S/G ratio, in this work, a new method based on Raman spectroscopy that uses the 370 cm(-1). Raman band-area intensity (370-area) was developed. The reliability of the Raman approach for determining S content was first tested by the quantitative analysis of three syringyl lignin models by sampling them, separately, in dioxane and in Avicel. Good linear correlations between the 370 cm(-1) intensity and model concentrations were obtained. Next, the percent syringyl (%S) lignin units in various woods were measured by correlating the 370 cm(-1) Raman intensity data with values of S units in lignin determined by three regularly used methods, namely, thioacidolysis, DFRC, and 2D-HSQC NMR. The former two methods take into account only the monomers cleaved from beta-O-4-linked lignin units, whereas the NMR method reports S content on the whole cell wall lignin. When the 370-area intensities and %S values from the regularly used methods were correlated, good linear correlations were obtained (R-2 = 0.767, 0.731, and 0.804, respectively, for the three methods). The correlation with the highest R-2 , i.e., with the 2D NMR method, is proposed for estimating S units in wood lignins by Raman spectroscopy as, in principle, both represent the whole cell wall lignin and not just the portion of lignin that gets cleaved to release monomers. The Raman analysis method is quick, uses minimal harmful chemicals, is carried out nondestructively, and is insensitive to the wet or dry state of the sample. The only limitations are that the sample of wood contains at least 30% S and not be significantly fluorescent, although the latter can be mitigated in some cases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available