4.7 Article

Insight of Stability of Procyanidins in Free and Liposomal Form under an in Vitro Digestion Model: Study of Bioaccessibility, Kinetic Release Profile, Degradation, and Antioxidant Activity

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 67, Issue 7, Pages 1990-2003

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.9b00351

Keywords

cocoa procyanidins; in vitro digestion; liposomes; bioaccessibility

Funding

  1. MINECO, Spain [AGL2017-89417-R]
  2. Ministry of Economy and Competitiveness

Ask authors/readers for more resources

Small unilamellar and multilayered liposomes loaded with polymeric (epi)catechins up to pentamers were produced. The bioaccessibility, kinetic release profile, and degradation under in vitro gastrointestinal conditions were monitored by UHPLC-DAD-QTOF-MS/MS. The results show that all of the procyanidins underwent depolymerization and epimerization into small molecular oligomers and mainly to (epi)catechin subunits. Moreover, all of the liposome formulations presented higher bioaccessibility and antioxidant activity in comparison to their respective counterparts in non-encapsulated form. Similar results were obtained with procyanidins from cocoa extract-loaded liposomes. Namely, the bioaccessibility of dimer, trimer, and tetramer fractions from cocoa-loaded liposomes were 4.5-, 2.1-, and 9.3-fold higher than those from the non-encapsulated cocoa extract. Overall, the procyanidin release profile was dependent on their chemical structure and physicochemical interaction with the lipid carrier. These results confirmed that liposomes are efficient carriers to stabilize and transport procyanidins with the aim of enhancing their bioaccessibility at a controlled release rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available