4.7 Article

In vitro and in vivo studies of novel fabricated bioactive dressings based on collagen and zinc oxide 3D scaffolds

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 557, Issue -, Pages 199-207

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2018.12.063

Keywords

ZnO nanoparticles; Collagen; Nanocomposites; Burn wound healing; Antibacterial properties; Biodistribution

Ask authors/readers for more resources

The paper reports the synthesis and physico-chemical and biological characterization of novel wound dressings based on collagen and essential oil functionalized ZnO nanoparticles intended to improve the treatment of burns and to reduce the risk for developing wound sepsis in patients with burns or chronic wounds. The prepared wound dressings were physico-chemical characterized by Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). In vitro biocompatibility and cytotoxicity was proved on human fibroblast cells, antimicrobial potential was assessed on Gram positive and Gram negative bacteria models (Staphylococcus aureus and Escherichia coll., respectively), while in vivo studies were performed on a rat burn wound experimental model. Functionalized ZnO nanoparticles (NPs) proved to range 15-20 nm in size and contain about 1% orange essential oil (EO), which was utilized as a natural antimicrobial agent. NPs are grain-shapped and have a low tendency to form aggregates. No toxicity was noticed in vitro, as human fibroblasts maintained a normal growth and their membrane integrity in the presence of EO functionalized NPs. The capacity of the prepared wound dressings to act as implantable bioresorbable scaffolds that accelerates wounds healing along with an excellent biocompatibility, lack of cytotoxicity and a good antibacterial activity, make these materials promising and safe candidates for wound dressing, especially in burn patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available