4.7 Article

Investigation of influence of detailed chemical kinetics mechanisms for hydrogen on supersonic combustion using large eddy simulation

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 44, Issue 10, Pages 5007-5019

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2019.01.005

Keywords

Detailed chemical kinetics mechanism; Hydrogen combustion; Large eddy simulation; Supersonic combustion; Partially stirred reactor combustion model

Funding

  1. National Natural Science Foundation of China [91541110, 51606156]

Ask authors/readers for more resources

Five detailed hydrogen combustion chemical kinetics mechanisms coupled with a partially stirred reactor (PaSR) combustion model were applied with large eddy simulation (LES) to study the influence of detailed mechanisms on supersonic combustion in a model scramjet combustor. The LES predictions of five detailed mechanisms for velocity, temperature, and combustor wall pressure show reasonable agreement with experimental results. Examining the effects on the distributions of temperature and species in supersonic combustion reveals that the supersonic flame structure is affected by detailed mechanisms. The different detailed mechanisms have a strong influence on the combustion efficiency, volume of the subsonic region, and subsonic combustion heat release rate in the combustor. Moreover, the total heat release in the computational domain for the five detailed chemical kinetics mechanisms is quite different. The subsonic combustion is dominant in the combustor for all detailed mechanisms. An analysis of the important reactions for H2O, HO2, and OH is performed, revealing the reasons for differences in temperature and species distributions among the different detailed mechanisms in the combustor. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available