4.7 Article

Development of biodegradable semiconducting foam based on micro-fibrillated cellulose/Cu-NPs

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume 132, Issue -, Pages 351-359

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2019.03.156

Keywords

Cellulosic foam; Copper nano-particles; Antimicrobial; Biodegradability; Dielectric properties

Funding

  1. National Research Centre [11090110]

Ask authors/readers for more resources

In this work regenerated cellulose was prepared by phosphoric acid as a primarily step in preparation of biodegradable foam. Copper nanoparticles (Cu-NPs) were embedded onto the cellulosic suspensions followed by freeze drying process. The scanning electron microscopy (SEM) revealed the presence of individual chunky regenerated cellulose fibers in the dimensions of micro that enhanced tendency to aggregate during drying. Xray diffraction (XRD) demonstrated that, the treatment of cellulose with concentrated phosphoric acid led to defibrated cellulose with lower crystallinity index than original cellulose fibers. The study provided insights about the influence of the Cu-NPs on the structure, thermal stability and the electrical contributions of the considered cellulose-based foam. The electrical and dielectric properties were studied by means of the broadband dielectric spectroscopy. The dielectric spectra were dominated by an anomalous behavior of the permittivity as illustrated versus frequency of the investigated samples. The real part of conductivity follows the universal power law at higher frequencies. The foam loaded Cu-NPs exhibit biodegradability and highly efficient antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available