4.7 Article

Efficacy of ceftolozane/tazobactam, alone and in combination with colistin, against multidrug-resistant Pseudomonas aeruginosa in an in vitro biofilm pharmacodynamic model

Journal

INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS
Volume 53, Issue 5, Pages 612-619

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijantimicag.2019.01.010

Keywords

Foreign-body infection; Pseudomonas aeruginosa; Multidrug resistance; Ceftolozane-tazobactam; Colistin; Biofilm

Funding

  1. Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III, Spain [PI14/00511]
  2. Merck Sharp & Dohme S.A, USA (Merck Investigator Studies Program) [IISP 54711]
  3. Spanish Ministry of Education [FPU 14/03124]

Ask authors/readers for more resources

Objectives: Ceftolozane/tazobactam is a potential tool for infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa), but its efficacy against some difficult-to-treat infections has not been well defined. Methods: Using an in vitro pharmacodynamic biofilm model, this study evaluated the comparative efficacy of ceftolozane/tazobactam against MDR/extensively drug-resistant (XDR) P. aeruginosa strains, alone and in combination with colistin. Simulated regimens of ceftolozane/tazobactam (2 g/1 g every 8 h), meropenem (2 g every 8 h) and ceftazidime (2 g every 8 h), alone and in combination with colistin (continuous infusion) were evaluated against three colistin-susceptible and ceftazidime-resistant strains: MDR-HUB1, ceftolozane/tazobactam-susceptible and meropenem-susceptible; XDR-HUB2, ceftolozane/tazobactam-susceptible and meropenem-resistant; MDR-HUB3, ceftolozane/tazobactam-resistant and meropenem-susceptible. Antibiotic efficacy was evaluated by decreases in bacterial counts (Delta log CFU/mL) from biofilm-embedded bacteria over 54 h. Resistance emergence was screened. Results: Among monotherapies, ceftolozane/tazobactam had low killing but no resistance appeared, ceftazidime was ineffective, colistin was initially effective but regrowth and resistance occurred, and meropenem was bactericidal against carbapenem-susceptible strains. Ceftolozane/tazobactam plus colistin was the most effective combination against the meropenem-resistant XDR-HUB2 strain (Delta log CFU/mL 54-0 h = -4.42 vs. -3.54 for meropenem-colistin; P = 0.002), whereas this combination against MDR-HUB1 (-4.36) was less effective than meropenem-colistin (-6.25; P < 0.001). Ceftolozane/tazobactam plus colistin was ineffective against the ceftolozane/tazobactam-resistant strain; meropenem plus colistin was the most bactericidal therapy (-6.37; P < 0.001 vs. others). Combinations of active beta-lactams plus colistin prevented the emergence of colistin-resistant strains. Conclusions: Combinations of colistin plus ceftolozane/tazobactam and meropenem were the most appropriate treatments for biofilm-related infections caused by XDR and MDR P. aeruginosa strains, respectively. These combinations could be considered as potential treatment options for these difficult to treat infections. (C) 2019 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available