4.0 Article

Ascorbic Acid can Reverse the Inhibition of Phytic Acid, Sodium Oxalate and Sodium Silicate on Iron Absorption in Caco-2 cells

Journal

Publisher

HOGREFE AG-HOGREFE AG SUISSE
DOI: 10.1024/0300-9831/a000503

Keywords

Caco-2 cell model; iron uptake; phytic acid; sodium oxalate; sodium silicate; a scorbic acid

Funding

  1. National Natural Science Foundation of China (Beijing, P.R. China) [U1504324]
  2. Advanced Cultivation Fund of Henan University of Science and Technology [2015GJB027]
  3. Doctoral Cultivation Fund of Henan university of Science and Technology [4025-13480066]

Ask authors/readers for more resources

The objective of the present study is to determine the effect of phytic acid (PA), sodium oxalate (SO) and sodium silicate (SS) on non-heme iron bioavailability in both the presence and absence of ascorbic acid (AA) using an in vitro digestion/Caco-2 cell model, and the levels of AA needed to promote Fe absorption from Fe complexed with PA, SO or SS were also determined. T he results indicated that adding PA at 1:1, 3:1, 5:1 and 10:1 molar as compared to Fe decreased ferrous iron uptake by 55.80 %(P < 0.05), 72.33 % (P < 0.05), 73.32 % (P < 0.05), and 73.26 % (P < 0.05), respectively. Adding SS at 1:1, 3:1, 5:1 and 10:1 molar as compared to Fe also decreased ferrous iron uptake by 51.40 % (P < 0.05), 66.12 %(P < 0.05), 60.19 % (P < 0.05) and 45.11 % (P < 0.05), respectively. Adding SO at 5:1 and 10:1 molar as compared to Fe decreased ferrous iron uptake by 40.81 % (P < 0.05) and 33.14 % (P < 0.05), respectively. When adding AA to iron plus organic acid medias reached molar ratios of 5:5:1 AA:PA:Fe, 3:5:1 AA:SO:Fe and 5:5:1 AA:SS:Fe, iron absorption from FeSO4 were significantly increased (P < 0.05). However, no significant effect was observed in iron absorption from FeCl3 when adding AA to the media. The results showed that PA, SS or SO decreases iron uptake from ferrous Fe, and AA can counteract their inhibiting effect on ferrous iron absorption and thus increase ferrous iron uptake. The results may be important for elucidating factors affecting iron bioavailability in the small intestine and for the development of foods with improved iron bioavailability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available