4.7 Article

Characterization of CO2 laser browning of dough

Journal

INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES
Volume 52, Issue -, Pages 145-157

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ifset.2018.11.013

Keywords

CO2 laser; Dough; Browning; Flux; Starch gelatinization; Food layered manufacture

Funding

  1. Columbia University's SEAS Interdisciplinary Research Seed (SIRS)

Ask authors/readers for more resources

We study the application of laser-heating technology to browning dough, due to its potential for high-resolution spatial and surface color control. An important component of this process is the identification of how laser parameters affect browning and baking and whether desirable results can be achieved. In this study, we analyze the performance of a carbon dioxide (CO2) mid-infrared laser (operating at 10.6 pm wavelength) during the browning of dough. Dough samples-consisting of flour and water-were exposed to the infrared laser at different laser power, beam diameter, and sample exposure time. At a laser energy flux of 0.32 MW-2 (beam diameter of 5.7 mm) and sample exposure time of 180 s we observe a maximum thermal penetration of 0.77 mm and satisfactory dough browning. These results suggest that a CO2 laser is ideal for browning thin goods as well as for food layered manufacture. Industrial relevance: A CO2 laser that operates at a wavelength of 10.6 pm (IR) was used as an alternative method for browning dough. The high-power flux of the laser and the high energy absorption of food at this wavelength allow for rapid surface browning; however, the high absorption limits thermal penetration depth. Nevertheless, accuracy of the laser beam enables high resolution spatial and thermal control of the non-enzymatic browning process. This high precision cooking makes laser-browning particularly ideal for food layered manufacture (FLM), a food processing technique that has gained increased attention in recent years. Using FLM, one can adjust the printed layer height to match cooking penetration depth. As a digital manufacturing technology, laser browning could also enable manufacture of highly complex and customized food geometries and textures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available