4.7 Article

Cellular UAV-to-X Communications: Design and Optimization for Multi-UAV Networks

Journal

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
Volume 18, Issue 2, Pages 1346-1359

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2019.2892131

Keywords

UAV-to-X communication; sense-and-send protocol; speed optimization; subchannel allocation

Funding

  1. National Nature Science Foundation of China [61625101]

Ask authors/readers for more resources

In this paper, we consider a single-cell cellular network with a number of cellular users (CUs) and unmanned aerial vehicles (UAVs), in which multiple UAVs upload their collected data to the base station (BS). Two transmission modes are considered to support the multi-UAV communications, i.e., UAV-to-network (U2N) and UAV-to-UAV (U2U) communications. Specifically, the UAV with a high signal-to-noise ratio (SNR) for the U2N link uploads its collected data directly to the BS through U2N communication, while the UAV with a low SNR for the U2N link can transmit data to a nearby UAV through underlaying U2U communication for the sake of quality of service. We first propose a cooperative UAV sense-and-send protocol to enable the UAV-to-X communications, and then formulate the subchannel allocation and UAV speed optimization problem to maximize the uplink sum-rate. To solve this NP-hard problem efficiently, we decouple it into three sub-problems: U2N and cellular user (CU) subchannel allocation, U2U subchannel allocation, and UAV speed optimization. An iterative subchannel allocation and speed optimization algorithm (ISASOA) is proposed to solve these sub-problems jointly. The simulation results show that the proposed ISASOA can upload 10% more data than the greedy algorithm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available