4.5 Article

Diffusive Molecular Communication in Biological Cylindrical Environment

Journal

IEEE TRANSACTIONS ON NANOBIOSCIENCE
Volume 18, Issue 1, Pages 74-83

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNB.2018.2885051

Keywords

Diffusive molecular communication (DMC); biological environment; partial differential equation; Green's function

Funding

  1. Iran National Science Foundation Research [95826907]

Ask authors/readers for more resources

Diffusive molecular communication (DMC) is one of the most promising approaches for realizing nano-scale communications in biological environments for healthcare applications. In this paper, a DMC system in biological cylindrical environment is considered, inspired by blood vessel structures in the body. The internal surface of the cylinder boundary is assumed to be covered by the biological receptors which may irreversibly react with hitting molecules. Also, the information molecules diffusing in the fluid medium are subject to a degradation reaction and flow. The concentration Green's function of diffusion in this environment is analytically derived which takes into account asymmetry in all radial, axial, and azimuthal coordinates. Employing obtained Green's function, information channel between transmitter and transparent receiver of DMC is characterized. To evaluate the DMC system in the biological cylinder, a simple on-off keying modulation scheme is adopted and corresponding error probability is derived. The particle-based simulation results confirm the proposed analysis. Also, the effect of different system parameters on the concentration Green's function are examined. Our results reveal that the degradation reaction and the boundary covered by biological receptors may be utilized to mitigate intersymbol interference and outperform the corresponding error probability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available