4.7 Article

Secure SWIPT by Exploiting Constructive Interference and Artificial Noise

Journal

IEEE TRANSACTIONS ON COMMUNICATIONS
Volume 67, Issue 2, Pages 1326-1340

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCOMM.2018.2874658

Keywords

SWIPT; energy harvesting; secure SWIPT; constructive interference; interference exploitation

Funding

  1. EPSRC [EP/M014150/1, EP/R007934/1]
  2. EPSRC [EP/R007934/1, EP/M014150/1] Funding Source: UKRI

Ask authors/readers for more resources

This paper studies interference exploitation techniques for secure beamforming design in simultaneous wireless information and power transfer in multiple-input single-output systems. In particular, multiuser interference (MUI) and artificially generated noise (AN) signals are designed as constructive to the information receivers (IRs) yet kept disruptive to potential eavesdropping by the energy receivers. The objective is to improve the received signal-to-interference and noise ratio (SINR) at the IRs by exploiting the MUI and AN power in an attempt to minimize the total transmit power. We first propose second-order cone programming-based solutions for the perfect channel state information (CSI) case by defining strong upper and lower bounds on the energy harvesting (EH) constraints. We then provide semidefinite programming-based solutions for the problems. In addition, we also solve the worst case harvested energy maximization problem under the proposed bounds. Finally, robust beamforming approaches based on the above are derived for the case of imperfect CSI. Our results demonstrate that the proposed constructive interference precoding schemes yield huge saving in transmit power over conventional interference management schemes. Most importantly, they show that, while the statistical constraints of conventional approaches may lead to instantaneous SINR as well as EH outages, the instantaneous constraints of our approaches guarantee both constraints at every symbol period.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available