4.7 Article

Shrink-Induced Microelectrode Arrays for Trace Mercury Ions Detection

Journal

IEEE SENSORS JOURNAL
Volume 19, Issue 7, Pages 2435-2441

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2018.2887269

Keywords

Microelectrode arrays; shrink polymer; anodic stripping voltammetry; mercury sensor

Ask authors/readers for more resources

An ultrasensitive microelectrode arrays (MEA) mercury sensor based on the heat-shrinkable polymer was fabricated by a very simple and low-cost method for the first time. We sputter a comb-finger gold electrode on the heat-shrinkable polymer, made use of the heat shrinkage and sticky characteristics of the polymer to construct MEA, and then detected the trace mercury ions (Hg2+) in the water by anodic stripping voltammetry. The characterization result indicated that the shrink polymer prepared by different heating temperature had controllable shrinkage ratios, and the electrode surface presented unique wrinkle structure by heating process. Due to the non-linear diffusion characteristic of the microelectrode and the microwrinkle structure, performance of the sensor had been improved greatly. The signal-to-noise ratio (Faraday current divide Background current) increased notably, and the sensor's detection limit was achieved as 0.0874 ppb. This is a very effective way to detect ultra-low concentrations mercury ions and the heat-shrinkable film-based microelectrode arrays construction method can be applied to many fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available