4.8 Article

Tissue Repair in the Mouse Liver Following Acute Carbon Tetrachloride Depends on Injury-Induced Wnt/β-Catenin Signaling

Journal

HEPATOLOGY
Volume 69, Issue 6, Pages 2623-2635

Publisher

WILEY
DOI: 10.1002/hep.30563

Keywords

-

Funding

  1. National Institutes of Health [T32GM007365, K08DK101603]
  2. Burroughs Wellcome Fund Career Award for Medical Scientists

Ask authors/readers for more resources

In the liver, Wnt/beta-catenin signaling is involved in regulating zonation and hepatocyte proliferation during homeostasis. We examined Wnt gene expression and signaling after injury, and we show by in situ hybridization that Wnts are activated by acute carbon tetrachloride (CCl4) toxicity. Following injury, peri-injury hepatocytes become Wnt-responsive, expressing the Wnt target gene axis inhibition protein 2 (Axin2). Lineage tracing of peri-injury Axin2(+) hepatocytes shows that during recovery the injured parenchyma becomes repopulated and repaired by Axin2(+) descendants. Using single-cell RNA sequencing, we show that endothelial cells are the major source of Wnts following acute CCl4 toxicity. Induced loss of beta-catenin in peri-injury hepatocytes results in delayed repair and ultimately injury-induced lethality, while loss of Wnt production from endothelial cells leads to a delay in the proliferative response after injury. Conclusion: Our findings highlight the importance of the Wnt/beta-catenin signaling pathway in restoring tissue integrity following acute liver toxicity and establish a role of endothelial cells as an important Wnt-producing regulator of liver tissue repair following localized liver injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available