4.7 Article

Critical Genomic Networks and Vasoreactive Variants in Idiopathic Pulmonary Arterial Hypertension

Journal

Publisher

AMER THORACIC SOC
DOI: 10.1164/rccm.201508-1678OC

Keywords

whole-exome sequencing; pulmonary arterial hypertension; vasodilator responsive

Funding

  1. National Center for Advancing Translational Sciences [UL1TR000445]
  2. American Thoracic Society/Pulmonary Hypertension Association
  3. NHLBI [1 PO1 HL 108800, 5 PO1 HL 092870-05]
  4. Canada Research Chair in Mitochondrial Dynamics
  5. William J. Henderson Foundation
  6. National Institutes of Health [RO1-HL071115, 1RC1HL099462-01]

Ask authors/readers for more resources

Rationale: Idiopathic pulmonary arterial hypertension (IPAH) is usually without an identified genetic cause, despite clinical and molecular similarity to bone morphogenetic protein receptor type 2 mutation-associated heritable pulmonary arterial hypertension (PAH). There is phenotypic heterogeneity in IPAH, with a minority of patients showing long-term improvement with calcium channel-blocker therapy. Objectives: We sought to identify gene variants (GVs) underlying IPAH and determine whether GVs differ in vasodilator-responsive IPAH (VR-PAH) versus vasodilator-nonresponsive IPAH (VN-PAH). Methods: We performed whole-exome sequencing (WES) on 36 patients with IPAH: 17 with VR-PAH and 19 with VN-PAH. Wnt pathway differences were explored in human lung fibroblasts. Measurements and Main Results: We identified 1,369 genes with 1,580 variants unique to IPAH. We used a gene ontology approach to analyze variants and identified overrepresentation of several pathways, including cytoskeletal function and ion binding. By mapping WES data to prior genome-wide association study data, Wnt pathway genes were highlighted. Using the connectivity map to define genetic differences between VR-PAH and VN-PAH, we found enrichment in vascular smooth muscle cell contraction pathways and greater genetic variation in VR-PAH versus VN-PAH. Using human lung fibroblasts, we found increased stimulated Wnt activity in IPAH versus controls. Conclusions: A pathway-based analysis of WES data in IPAH demonstrated multiple rare GVs that converge on key biological pathways, such as cytoskeletal function and Wnt signaling pathway. Vascular smooth muscle contraction-related genes were enriched in VR-PAH, suggesting a potentially different genetic predisposition for VR-PAH. This pathway-based approach may be applied to next-generation sequencing data in other diseases to uncover the contribution of unexpected or multiple GVs to a phenotype.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available