4.5 Article

Vascular regeneration in adult mouse cochlea stimulated by VEGF-A165 and driven by NG2-derived cells ex vivo

Journal

HEARING RESEARCH
Volume 377, Issue -, Pages 179-188

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.heares.2019.03.010

Keywords

Mouse; Angiogenesis; VEGF-A(165); Stria vascularis

Funding

  1. National Institutes of Health [NIH/NIDCD R21 DC016157, NIH/NIDCD R21DC0161571S1, NIH/NIDCD R01 DC015781]
  2. NIH [P30-DC005983]
  3. Action on Hearing Loss F77

Ask authors/readers for more resources

Can damaged or degenerated vessels be regenerated in the ear? The question is clinically important, as disruption of cochlear blood flow is seen in a wide variety of hearing disorders, including in loud sound-induced hearing loss (endothelial injury), ageing-related hearing loss (lost vascular density), and genetic hearing loss (e.g., Norrie disease: strial avascularization). Progression in cochlear blood flow (CBF) pathology can parallel progression in hair cell and hearing loss. However, neither new vessel growth in the ear, nor the role of angiogenesis in hearing, have been investigated. In this study, we used an established ex vivo tissue explant model in conjunction with a matrigel matrix model to demonstrate for the first time that new vessels can be generated by activating a vascular endothelial growth factor (VEGF-A) signal. Most intriguingly, we found that the pattern of the newly formed vessels resembles the natural 'mesh pattern' of in situ strial vessels, with both lumen and expression of tight junctions. Sphigosine-1-phosphate (S1P) in synergy with VEGF-A control new vessel size and growth. Using transgenic neural/glial antigen 2 (NG2) fluorescent reporter mice, we have furthermore discovered that the progenitors of de novo strial vessels are NG2-derived cells. Taken together, our data demonstrates that damaged strial microvessels can be regenerated by reprogramming NG2-derived angiogenic cells. Restoration of the functional vasculature may be critical for recovery of vascular dysfunction related hearing loss. (C) 2019 The Authors. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available