4.3 Article

Impact of sarcopenia on diaphragm muscle fatigue

Journal

EXPERIMENTAL PHYSIOLOGY
Volume 104, Issue 7, Pages 1090-1099

Publisher

WILEY
DOI: 10.1113/EP087558

Keywords

fibre type; sarcopenia; specific force

Categories

Funding

  1. National Institutes of Health [R01-AG044615, R01-AG057052]

Ask authors/readers for more resources

Type IIx and/or IIb diaphragm muscle (DIAm) fibres make up more fatigable motor units that are more vulnerable to sarcopenia, i.e. age-associated reductions of specific force and cross-sectional area. In contrast, type I and IIa DIAm fibres form fatigue-resistant motor units that are relatively unchanged with age. The fatigue resistance of the DIAm is assessed by normalizing the residual force generated after a period of repeated supramaximal stimulation (e.g. 120 s) to the initial maximal force. Given that sarcopenia primarily affects more fatigable DIAm motor units, apparent fatigue resistance improves with ageing. However, the central question is whether there is an ageing-related difference in the residual force generated by the DIAm after repeated stimulation and whether this force is sufficient to sustain ventilatory behaviours of DIAm. In 6- and 24-month-old Fischer 344 rats, we assessed the loss of ex vivo DIAm force throughout 120 s of repeated supramaximal stimulation at 10, 40 and 75 Hz. We found that relative fatigue resistance improved in older rats at 40 and 75 Hz stimulation. Across all stimulation frequencies, DIAm residual force was unchanged with age (similar to 5 N cm(-2)). We conclude that ageing increases the relative contribution of type I and IIa fibres to DIAm force, with decreased contributions of type IIx and/or IIb fibres. The residual force generated by the DIAm after repeated stimulation is sufficient to accomplish ventilatory behaviours, regardless of age.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available