4.3 Article

Metformin Promotes Neuronal Differentiation via Crosstalk between Cdk5 and Sox6 in Neuroblastoma Cells

Journal

Publisher

HINDAWI LTD
DOI: 10.1155/2019/1765182

Keywords

-

Funding

  1. Prince of Songkla University, Songkhla, Thailand [SCI600525S, SCI581240S]
  2. Science and Achievement Scholarship of Thailand (SAST)

Ask authors/readers for more resources

Metformin has recently emerged as a key player in promotion of neuroblastoma differentiation and neurite outgrowth. However, molecular mechanisms of how metformin promotes cellular differentiation have not yet been fully elucidated. In this study, we investigated how metformin promotes cell differentiation, via an inhibition of cell proliferation, by culturing SH-SY5Y neuroblastoma cells with or without metformin. Pretreatment with reactive oxygen species (ROS) scavenger, NAC, revealed that ROS plays a crucial role in induction of cell differentiation. Cell differentiation was observed under various morphological criteria: extension of neuritic processes and neuronal differentiation markers. Treatment with metformin significantly increased neurite length, number of cells with neurite, and expression of neuronal differentiation markers, -tubulin III and tyrosine hydroxylase (TH) compared with untreated control. Further investigation found that metformin significantly decreased Cdk5 but increased Sox6 during cell differentiation. Analysis of the mechanism underlying these changes using Cdk5 inhibitor, roscovitine, indicated that expressions of Cdk5 and Sox6 corresponded to metformin treatment. These results suggested that metformin produces neuronal differentiation via Cdk5 and Sox6. In addition, phosphorylated Erk1/2 was decreased while phosphorylated Akt was increased in metformin treatment. Taken together, these findings suggest that metformin promotes neuronal differentiation via ROS activation through Cdk5/Sox6 crosstalk, relating to Erk1/2 and Akt signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available