4.3 Article

Effect of intrinsic decoherence on entanglement of three polar molecules with two-dimensional rotation

Journal

EUROPEAN PHYSICAL JOURNAL D
Volume 73, Issue 3, Pages -

Publisher

SPRINGER
DOI: 10.1140/epjd/e2019-90363-2

Keywords

Molecular Physics and Chemical Physics

Funding

  1. Ministry of Science and Technology of Taiwan [107-2112-M-390-001]

Ask authors/readers for more resources

The dynamic entanglement of three polar molecules with two-dimensional rotations is investigated under the influence of an electric field and intrinsic decoherence. The parameters of the electric field, such as strength and orientation, are tuned to tailor the rotational properties of the molecules. Due to the two-dimensional rotation and its dipole-dipole interaction, a mechanism of two-molecule transition occurs and leads to specific quantum states in the tripartite system. The components of the states are analyzed by varying the symmetry of the molecular arrangement. We evaluate the negativity to probe the entanglement characteristics of the system. The negativity shows distinct oscillating features for initial GHZ, W, and inverted-W states. These features are suppressed and eventually smoothed in the presence of intrinsic decoherence. We further analyze the contribution of the quantum states to the entanglement. Due to specific selection rules, only two of the states are found to dominate the evolution of the negativity. Among the three cases, the system based on the inverted-W state evolves with the lowest loss of entanglement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available