4.5 Article

Cells-on-nanofibers: Effect of polyethyleneimine on hydrophobicity of poly-ε-caprolacton electrospun nanofibers and immobilization of bacteria

Journal

ENZYME AND MICROBIAL TECHNOLOGY
Volume 126, Issue -, Pages 24-31

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.enzmictec.2019.03.002

Keywords

Electrospun nanofiber; Biofunctional surface; Whole-cell biosensor; G. oxydans; Covalent immobilization

Funding

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [215Z194]
  2. Aliye Uster Foundation
  3. Turkish Academy of Sciences The Young Scientists Award Programme (TUBA-GEBIP2015)

Ask authors/readers for more resources

Among other synthetic polymers, poly-E-caprolacton (PCL) nanofibers are one of the most popular ones, especially in tissue engineering application due to its distinct mechanical and chemical properties. However, in some cases, lacking functional group on polymer structure obstructs the covalent modification of the PCL nanofibers for the aim. Herein, polyethyleneimine (PEI) was blended with PCL polymer to provide functional amino groups on the surface of the nanofiber mat. PCL-PEI nanofiber was successfully constructed and preparation parameters were optimized. Scanning electron microscopy (SEM) and contact angle measurements were carried out to characterize the PCL-PEI nanofiber. After characterization, Gluconobacter oxydans was immobilized on the surface by the help of glutaraldehyde chemistry. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements were carried out to prove the success of surface modification. In addition, scanning electron microscopy images were also taken after the immobilization of G. oxydans on PCL-PEI nanofiber mat. For the first time in this study, one microorganism was immobilized onto the electrospun nanofiber mat by covalent modification. In conclusion, PCL-PEI/G. oxydans whole-cell biosensor was tested for sensing of glucose as a model analyte.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available