4.7 Article

Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 26, Issue 13, Pages 13649-13657

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-019-04718-w

Keywords

Botryosphaeria rhodina; Silver nanoparticles (AgNPs); FTIR; SEM; TEM; Antioxidant activity; Anticancer activity

Funding

  1. Advanced Level State Biotech Hub at Mizoram University
  2. Department of Biotechnology (DBT)

Ask authors/readers for more resources

Generally, fungi have the ability to secrete large amounts of secondary metabolites which have the ability to reduce metal ions to metallic nanoparticles. In this report, silver nanoparticles (AgNPs) were synthesized by using an endophytic fungus isolated from the medicinal plant, Catharanthus roseus (Linn.). The endophytic fungus was identified as Botryosphaeria rhodina based on the ITS sequencing. The synthesized AgNPs were characterized by adopting various high-throughput techniques, scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HR-TEM) and UV-Visible spectrophotometer. In vitro anticancer efficacy of AgNPs was tested on A-549 cells. The synthesized AgNPs were effective in scavenging free radicals and induced hallmarks of apoptosis including nuclear and DNA fragmentation in lung (A549) cancer cell lines under in vitro conditions. The results suggested that the natural biomolecules in the endophytic fungi incorporated into the nanoparticles could be responsible for the synergetic cytotoxic activity against cancer cells. The AgNPs were found to have cytotoxicity IC50 of 40g/mL against A549 cells. To the best our knowledge, this is the first report demonstrating that AgNPs from Botryosphaeria rhodina could be able to induce apoptosis in various types of cancer cells as a novel strategy for cancer treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available