4.8 Article

Fish and Seabird Gut Conditions Enhance Desorption of Estrogenic Chemicals from Commonly-Ingested Plastic Items

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 53, Issue 8, Pages 4588-4599

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b07140

Keywords

-

Funding

  1. UCR/AES Resource Allocation Program
  2. USGS/NIWR
  3. National Science Foundation IGERT [DGE-1144635]

Ask authors/readers for more resources

Plastic is ingested by over 100 bird species and 40 fish species. Once ingested, plastic may release endocrine disrupting plastic additives in the animal; however, amounts transferred are poorly characterized. We exposed 16 commonly ingested plastic items to fish and seabird laboratory gut mimic models using the digestive enzyme pepsin at pH 2 and shook them for 16 h at either 28 degrees C (in saltwater) for fish or 40 degrees C (in freshwater) for seabirds. Gut liquid was then evaluated for estrogen receptor activity using an in vitro cell line, and plastic-additive concentrations were quantified using ultrahigh-performance liquid chromatography/tandem mass spectrometry. Both seabird (p < 0.0001) and fish gut conditions (p < 0.0001) significantly enhanced the biological estrogenicity of expanded polystyrene, polyethylene shopping bag, and polypropylene string relative to controls, resulting in up to a 10.6-fold increase in estrogenicity. Out of 12 plastic additives analyzed, bisphenol A (BPA) (204 +/- 129%) and diethylhexyl phthalate (DEHP) (175 +/- 97%) concentrations were significantly increased in seabird gut conditions relative to control and butylbenzyl phthalate (BBP) (132 +/- 68%) was significantly increased in fish gut conditions relative to control. BPA, DEHP, and BBP did not adequately account for the increase in biological estrogenicity, suggesting that uncharacterized plastic additives may have been enhanced by gut conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available