4.8 Article

Porous Eleocharis@MnPE Layered Hybrid for Synergistic Adsorption and Catalytic Biodegradation of Toxic Azo Dyes from Industrial Wastewater

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 53, Issue 4, Pages 2161-2170

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b05866

Keywords

-

Funding

  1. National Natural Science Foundation, China
  2. RMIT University, Melbourne, Australia
  3. Peking University
  4. University of Agriculture Faisalabad, Pakistan

Ask authors/readers for more resources

The effective treatment of industrial wastewater to protect freshwater reserves for the survival of life is a primary focus of current research. Herein, a multicomponent Eleocharis-manganese peroxidase enzyme (Eleocharis@MnPE) layered hybrid with high surface area (1200 m(2)/m(3)), with a strong synergistic adsorption and catalytic biodegradation (SACB), has been developed through a facile method. A combination of outer porous (Eleocharis) and inner catalytically active (MnPE) components of the hybrid resulted in highly efficient SACB system, evidenced by high removal rate of 15 kg m(-3) day(-1) (100%) and complete degradation of toxic Orange II (OR) azo dye into nontoxic products (gases and weak acids). The Eleocharis@MnPE layered hybrid efficiently degraded both OR in synthetic wastewater and also other azo dyes (red, pink, and yellow dyes) present in three different textile industrial effluents. For the industrial effluents, these were evidenced by the color disappearance and reduction in biological oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) of up to 97%, 92%, and 76%, respectively. Furthermore, reduced toxicity of treated wastewater was confirmed by decreased cell toxicity to 0.1%-1% and increased cell viability to 90%. We believe that designing a hybrid system with strong ability of SACB could be highly effective for industrial-scale treatment of wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available