4.7 Article

Antibiotic resistance and heavy metal tolerance in cultured bacteria from hot springs as indicators of environmental intrinsic resistance and tolerance levels

Journal

ENVIRONMENTAL POLLUTION
Volume 249, Issue -, Pages 696-702

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.03.059

Keywords

Hot springs; Antibiotic resistance; Heavy-metal tolerance; Bacteria; Intrinsic levels

Funding

  1. University of Johannesburg, South Africa

Ask authors/readers for more resources

Antibiotic resistance (AR) in the environment is a growing and global concern for public health, and intrinsic AR from pristine sites untouched by pharmaceutical antibiotics is not commonly studied. Forty aerobic bacteria were isolated from water and sediment samples of hot springs in South Africa. Resistance against ten antibiotics (carbenicillin, gentamicin, kanamycin, streptomycin, tetracycline, chloramphenicol, ceftriaxone, co-trimoxazole, nalidixic acid and norfloxacin) was tested using a standard disk diffusion assay. Resistance to one or two antibiotics were equally found in 37.5%, while the remaining 22% showed complete sensitivity. Intermediate resistance was found for ceftriaxone (52.5%), nalidixic acid (37.5%) and carbenicillin (22.5%), while low levels of resistance were observed for streptomycin (5%) and kanamycin (2.5%), and total sensitivity towards the other antibiotics. Twenty-nine isolates were also tested against eight different heavy-metal salts (Al, Cr, Cu, Fe, Hg, Mn, Ni and Pb) at 10 and 40 mM. All isolates were tolerant and able to grow on >= 2 heavy-metal salts at both concentrations. No association was observed between AR and heavy metal tolerance (HMT). Based on the relatively low AR levels, hot spring sites are pristine environments reflecting baseline levels for comparison to other potentially contaminated groundwater sites. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available