4.6 Article

A Study on the Hall-Petch Relationship and Grain Growth Kinetics in FCC-Structured High/Medium Entropy Alloys

Journal

ENTROPY
Volume 21, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/e21030297

Keywords

high entropy alloy; Hall-Petch relationship; grain growth; activation energy

Funding

  1. Ministry of Science and Technology, Taiwan [MOST 106-2218-E-002-025, MOST 107-2218-E-002-019]

Ask authors/readers for more resources

The recrystallization behavior, grain growth kinetics, and corresponding hardness variation of homogenized and 80% cold-rolled FeCoNiCrPd, FeCoNiCrMn, and their quaternary/ternary FCC-structured high/medium entropy alloys (H/MEAs) annealed under different conditions were investigated. Experimental results indicate that the grain size and hardness of these H/MEAs follow the Hall-Petch equation, with the Hall-Petch coefficient K-H value being mainly dominated by the alloy's stacking fault energy and shear modulus. The FeCoNiCrPd alloy exhibits the highest hardness of the H/MEAs at the same grain size due to the largest Young's modulus difference between Cr and Pd. The grain growth exponent n, kinetic constant k, and activation energy for grain growth Q(G) of all H/MEAs are calculated. The k can be expressed by the Arrhenius equation with Q(G), which is attributed to the diffusion rate. The results demonstrate that the Q(G) values of these H/MEAs are much higher than those of conventional alloys; most notable is FeCoNiCrPd HEA, which has an unusually lattice distortion effect that hinders grain growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available