4.7 Article

Design of steam condensation temperature for an innovative solar thermal power generation system using cascade Rankine cycle and two-stage accumulators

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 184, Issue -, Pages 389-401

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2019.01.067

Keywords

Steam condensation temperature; Direct steam generation; Cascade Rankine cycle; Two-stage accumulators; Wet steam turbine

Funding

  1. EU Marie Curie International Incoming Fellowships Program [703746]
  2. National Science Foundation of China [NSFC 51476159, 51761145109, 51776193]
  3. International Technology Cooperation Program of the Anhui Province of China [BJ2090130038]
  4. Marie Curie Actions (MSCA) [703746] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

An innovative solar thermal power generation system using cascade steam-organic Rankine cycle (SORC) and two-stage accumulators has recently been proposed. This system offers a significantly higher heat storage capacity than conventional direct steam generation (DSG) solar power plants. The steam condensation temperature (T-2) in the proposed system is a crucial parameter because it affects the SORC efficiency (eta(SORC)) in normal operations and the power conversion of the bottoming organic Rankine cycle (ORC) in the unique heat discharge process. The present study develops a methodology for the design of T-2 with respect to a new indicator, that is, the equivalent heat-to-power efficiency (72,9). neg is a compromise between the efficiencies in different operation modes. The effects of main steam temperature (T-1), Baumann factor (a), mass of storage water (M-w), and ORC working fluid on T-2 are investigated. Results show that neg is a better indicator than eta(SORC). The optimum steam condensation temperature (T-2,T-opt) that corresponds to the maximum eta(eq) (eta(eq,max)) is generally higher than that based on the maximum eta(SORC), T-2,T-opt, reduces as T-1, a, and M-w decrease. eta(eq,max) rises with the increment of T-1 and the decrement of a and M-w. Pentane is a more preferable ORC fluid than benzene and R245fa. The T-2,T-opt and eta(eq,max) of pentane are, respectively, 139-190 degrees C and 20.93%-24.24%, provided that T-1 ranges between 250 degrees C and 270 degrees C, a varies from 0.5 to 1.5, and M-w changes from 500 ton to 1500 ton.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available