4.7 Article

A novel PEMEC with 3D printed non-conductive bipolar plate for low-cost hydrogen production from water electrolysis

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 182, Issue -, Pages 108-116

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2018.12.046

Keywords

3D printing; Plastic bipolar plate; Water electrolysis; Low cost; Hydrogen; Electrical conductivity

Funding

  1. U.S. Department of Energy's National Energy Technology Laboratory [DE-FE0011585]
  2. National Renewable Energy Laboratory [DE-AC36-08GO28308]

Ask authors/readers for more resources

For establishing the large-scale hydrogen production as energy carrier from water electrolysis, improving cost-effectiveness and efficiency remains the main challenges. In this study, we propose a novel proton exchange membrane electrolyzer cell (PEMEC), consisting of non-conductive bipolar plates (BPs) and thin film liquid/gas diffusion layers (TF-LGDLs) to reduce the cost and improve the PEMEC performance. The 3D printed non-conductive BP is manufactured with low-cost polylactic acid (PLA) and is mainly functioned to distribute the water and gas products. A titanium thin film LGDL (TF-LGDL) with surroundings is developed for directly transporting electrons from the external power sources, which changes the electron transport path in the PEMECs. The PLA BP exhibits an extremely low cost (1/10 of that of the graphite BP), and the hydrogen production rate per unit BP cost in a PEMEC with PLA BP, is almost 6 times higher than a conventional one with graphite BPs. More importantly, the PEMECs with PLA BPs can achieve a good electrochemical performance of 2.21 V at 1 A/cm(2)under room temperature. A model is also developed to investigate the impact of the BP resistivity of on the cell performance, and a guideline for the selection guideline of conductivity of BPs material is provided. The easily accessible and low-cost PLA BPs coupled with the new electron-conducting path will drive the exploration of plastic materials for economic and efficient water splitting or other energy conversion devices, including fuel cells, batteries, and solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available