4.7 Article

Structural basis of HEAT-kleisin interactions in the human condensin I subcomplex

Journal

EMBO REPORTS
Volume 20, Issue 5, Pages -

Publisher

WILEY
DOI: 10.15252/embr.201847183

Keywords

chromosome condensation; HEAT repeats; HEAT-kleisin interaction; ssDNA binding; X-ray crystallography

Funding

  1. Japan Society for the Promotion of Science (JSPS), KAKENHI [15K18491, 17K07314, 15K06959, 16H04755, 17H06014, 15H05971]
  2. Takeda Science Foundation
  3. Naito Foundation
  4. Grants-in-Aid for Scientific Research [17H06014, 15K06959, 15H05971, 17K07314, 16H04755, 15K18491] Funding Source: KAKEN

Ask authors/readers for more resources

Condensin I is a multi-protein complex that plays an essential role in mitotic chromosome assembly and segregation in eukaryotes. It is composed of five subunits: two SMC (SMC2 and SMC4), a kleisin (CAP-H), and two HEAT-repeat (CAP-D2 and CAP-G) subunits. Although balancing acts of the two HEAT-repeat subunits have been demonstrated to enable this complex to support the dynamic assembly of chromosomal axes in vertebrate cells, its underlying mechanisms remain poorly understood. Here, we report the crystal structure of a human condensin I subcomplex comprising hCAP-G and hCAP-H. hCAP-H binds to the concave surfaces of a harp-shaped HEAT-repeat domain of hCAP-G. Physical interaction between hCAP-G and hCAP-H is indeed essential for mitotic chromosome assembly recapitulated in Xenopus egg cell-free extracts. Furthermore, this study reveals that the human CAP-G-H subcomplex has the ability to interact with not only double-stranded DNA, but also single-stranded DNA, suggesting functional divergence of the vertebrate condensin I complex in proper mitotic chromosome assembly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available