4.8 Article

Histidine is selectively required for the growth of Myc-dependent dedifferentiation tumours in the Drosophila CNS

Journal

EMBO JOURNAL
Volume 38, Issue 7, Pages -

Publisher

WILEY
DOI: 10.15252/embj.201899895

Keywords

dedifferentiation; Drosophila; histidine; metabolism; neuroblast

Funding

  1. NHMRC [APP1044704]
  2. Peter MacCallum Cancer Institute start-up funding
  3. Francis Crick Institute, from Cancer Research UK [FC001088]
  4. UK Medical Research Council [FC001088]
  5. Wellcome Trust [FC001088]
  6. UK Medical Research Council, National Institute for Medical Research [U117584237]
  7. MRC [MC_U117584237, MC_U117533887] Funding Source: UKRI

Ask authors/readers for more resources

Rewired metabolism of glutamine in cancer has been well documented, but less is known about other amino acids such as histidine. Here, we use Drosophila cancer models to show that decreasing the concentration of histidine in the diet strongly inhibits the growth of mutant clones induced by loss of Nerfin-1 or gain of Notch activity. In contrast, changes in dietary histidine have much less effect on the growth of wildtype neural stem cells and Prospero neural tumours. The reliance of tumours on dietary histidine and also on histidine decarboxylase (Hdc) depends upon their growth requirement for Myc. We demonstrate that Myc overexpression in nerfin-1 tumours is sufficient to switch their mode of growth from histidine/Hdc sensitive to resistant. This study suggests that perturbations in histidine metabolism selectively target neural tumours that grow via a dedifferentiation process involving large cell size increases driven by Myc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available