4.5 Article

Magnetic digital microfluidics on a bioinspired surface for point-of-care diagnostics of infectious disease

Journal

ELECTROPHORESIS
Volume 40, Issue 8, Pages 1178-1185

Publisher

WILEY
DOI: 10.1002/elps.201900074

Keywords

Diagnostics; Droplet; Magnetic digital microfluidics; Magnetic particles; Polydopamine

Funding

  1. School of Mechanical and Aerospace Engineering at Nanyang Technological University
  2. Singapore Ministry of Education [RG49/17]
  3. Ageing Research Institute for Society and Education (ARISE), Nanyang Technological University, Singapore [ARISE/2017/22]

Ask authors/readers for more resources

Magnetic digital microfluidics uses magnetic force to manipulate droplets on a Teflon-coated substrate through the added magnetic particles. To achieve a wide range of droplet manipulation, hydrophilic patterns, known as surface energy traps, are introduced onto the Teflon-coated hydrophobic substrate. However, the Teflon-coated substrate is difficult to modify because it is nonwettable, and existing techniques for patterning surface energy traps have many limitations. Inspired by the mussel adhesion mechanism, we use polydopamine, a bioinspired substance that adheres strongly to almost any materials, to pattern surface energy traps on the Teflon-coated substrate with a great ease. We have optimized the polydopamine coating protocol and characterized the surface properties of the polydopamine surface energy traps. Droplet operations including particle extraction, liquid dispensing, liquid shaping, and cross-platform transfer have been demonstrated on the polydopamine surface energy trap-enabled magnetic digital microfluidic platform in both single-plate and two-plate configurations. Furthermore, the detection of hepatitis B surface antigen using ELISA has been demonstrated on the new magnetic dgitial microfluidic platform. This new bioinspired magnetic digital microfluidic platform is easy to fabricate and operate, showing a great potential for point-of-care applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available