4.6 Article

Embedding ZnSe nanoparticles in a porous nitrogen-doped carbon framework for efficient sodium storage

Journal

ELECTROCHIMICA ACTA
Volume 296, Issue -, Pages 582-589

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2018.11.059

Keywords

ZnSe nanoparticles; Nitrogen-doped carbon; Hybrid structures; Anode; Sodium-ion batteries

Funding

  1. National Natural Science Fund of China [21871164]
  2. China Postdoctoral Science Foundation [2017M610419]
  3. Special Fund for Postdoctoral of China [2018T110680]
  4. Special Fund for Postdoctoral Innovation Program of Shandong Province [201701003]
  5. Fundamental Research Funds of Xinjiang Institute of Engineering for PhD [2013BQT051607]
  6. Taishan Scholar Project of Shandong Province [ts201511004]

Ask authors/readers for more resources

Sodium-ion batteries (SIBs) have drawn great attentions due to the abundance of sodium and their similar electrochemical principles to that of lithium-ion batteries. However, larger ionic radius of Na+ greatly retards Na+ transport and causes severe volume expansion. Therefore, delicate design of anodes for SIBs that can reversibly accommodate sodium ions is a crucial, but challenging task. In this paper, we rationally engineer a hybrid composite featured with ZnSe nanoparticles uniformly wrapped in three-dimensional (3D) porous nitrogen-doped carbon matrix (ZnSe NP@p-NC). The synthesis is achieved through the domination of the self-template-induced reaction between Zn-based zeolitic imidazolate framework (ZIF-8) nanododecahedra and Se powder at an elevated temperature. Due to the structural and compositional merits, including a 3D porous structure, the uniform distribution of the small-size ZnSe nanoparticles, and graphitic carbon matrix, these unique ZnSe NP@p-NC popcorn balls display a high sodium-storage performance, including cycling stability (181.7 mAh g(-1) after 2000 cycles at 10 A g(-1)), rate capability, and initial Coulombic efficiency. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available