4.6 Article

Skeletal inflammation and attenuation of Wnt signaling, Wnt ligand expression, and bone formation in atherosclerotic ApoE-null mice

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00501.2015

Keywords

bone remodeling; osteoblasts; osteoclasts; osteoporosis; inflammation; Wnt signaling

Funding

  1. Biomedical Laboratory Research and Development Service of the Veterans Administration Office of Research and Development [I01 BX000514]
  2. National Institutes of Health [P01 AG-13918]
  3. University of Arkansas for Medical Sciences
  4. University of Arkansas Translational Research Institute [1UL1 RR-029884]

Ask authors/readers for more resources

ApoE-null (ApoE-KO) mice fed a high-fat diet (HFD) develop atherosclerosis, due in part to activation of vascular inflammation by oxidized low-density lipoprotein. Since bone loss also occurs in these mice, we used them to investigate the impact of oxidized lipids on bone homeostasis and to search for underlying pathogenic pathways. Four-month-old female ApoE-KO mice fed a HFD for three months exhibited increased levels of oxidized lipids in bone, as well as decreased femoral and vertebral trabecular and cortical bone mass, compared with ApoE-KO mice on normal diet. Despite HFD-induced increase in expression of Alox15, a lipoxygenase that oxidizes LDL and promotes atherogenesis, global deletion of this gene failed to ameliorate the skeletal impact of HFD. Osteoblast number and function were dramatically reduced in trabecular and cortical bone of HFD-fed mice, whereas osteoclast number was modestly reduced only in trabecular bone, indicating that an imbalance in favor of osteoclasts was responsible for HFD-induced bone loss. These changes were associated with decreased osteoblast progenitors and increased monocyte/macrophages in the bone marrow as well as increased expression of IL-1 beta, IL-6, and TNF. HFD also attenuated Wnt signaling as evidenced by reduced expression of Wnt target genes, and it decreased expression of pro-osteoblastogenic Wnt ligands. These results suggest that oxidized lipids decrease bone mass by increasing anti-osteoblastogenic inflammatory cytokines and decreasing pro-osteoblastogenic Wnt ligands.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available