4.7 Article

5G-enabled Hierarchical architecture for software-defined intelligent transportation system

Journal

COMPUTER NETWORKS
Volume 150, Issue -, Pages 81-89

Publisher

ELSEVIER
DOI: 10.1016/j.comnet.2018.11.035

Keywords

SDN; 5G; ITS; Sensing layer; Relay layer; Core network layer

Funding

  1. national research foundation of Korea (NRF) - Korean government [NRF-2017r1c1b5017464]

Ask authors/readers for more resources

With the rapid advancement of technology, an increasing number of devices are being connected to the Internet and getting smart. Such advancement brings new challenges in the field of intelligent transportation system (ITS), including transferring of high data rates, providing rapid response system to users, addition of new devices, and their remote configuration. Thus, mobile information systems, along with intelligent multimodal mobility services, cope with such constraints and take significant benefit of the associated technology from emerging information and communication frameworks. Therefore, recent advancement in the field of telecommunication has witnessed increased interest in ITS, especially vehicular ad-hoc networks (VANETS). Software-defined networks (SDNs) can also bring advantages to ITS due their flexibility and programmability to the network via their logical and centralized control entity. However, the bandwidth and continuous connection between ITS and SDN is still a challenge owing to the highly mobile nature of VANETS. Therefore, to address this issue, this paper presents a novel concept for enhancing the capabilities of ITS via the newly proposed 5G-based SDN architecture for ITS. The proposed system architecture is based on the following three function layers: sensing layer, relay layer, and core network layer. Continuous accessibility, via flexible and programmable features, is achieved through SDN features. In addition, high data rates and bandwidth are provided by the proposed 5G architecture. The simulation results show that the proposed system architecture achieves better results than the ad-hoc on-demand distance vector routing protocol. (C) 2018 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available